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Abstract— This paper proposes an end-to-end story segmen-
tation approach based on long short-term memory (LSTM) -
recurrent neural network (RNN). Traditional story segmentation
approaches are a two-stage pipeline consisting of feature extrac-
tion and segmentation, each of which has its individual objective
function. In other words, the objective function used to extract
features is different from the true performance measure of story
segmentation, which may degrade the segmentation results. In
this paper, we combine the two components and optimize them
jointly, using an LSTM-RNN. Specifically, one LSTM layer is
used to extract sentence vectors, and another LSTM layer is used
to predict story boundaries by taking as input of the sentence
vectors. Importantly, the whole network is optimized directly
to predict story boundaries. We also investigate bi-directional
LSTM (BLSTM) that can utilize past and future information in
the process of extracting sentence vectors and story boundary
prediction. Experimental results on the TDT2 corpus show that
the proposed approach achieves state-of-the-art performance in
story segmentation.

I. INTRODUCTION

Story segmentation is a task of partitioning a stream of
audio, video or text into story segments, each addressing a
specific topic. It is a necessary precursor for a variety of
language processing technologies including content indexing
and retrieval [1], document summarization [2], topic detection
and tracking [3], [4] and information extraction [5]. Typical
story segmentation approaches are a pipeline consisting of
feature learning and segmentation. The two components are
not optimized jointly for story segmentation, making indepen-
dent assumptions for individual components [6], [7], [8], [9].
Recently, end-to-end (E2E) neural network (NN) learning that
jointly optimizes all components (e.g., in speech recognition)
has achieved promising results [10], [11], [12]. This motivates
us to develop an end-to-end NN approach for the story
segmentation task at hand.

Story segmentation has been studied for different genres,
such as broadcast news [13], [14], meeting recordings [15] and
lectures [16], [17], etc., over various types of media, including
audio [17], [18], [19], video [20] and text [21], [22], [23], [24],
[6], [15]. In this paper, we aim to perform story segmentation
for textual documents like broadcast news speech recognition
transcripts. Note that, with the recent tremendous success
of large vocabulary continuous speech recognition (LVCSR)

‡Corresponding author

using deep neural networks (DNN) [25], [26], [27], [28], [29],
[30], [31], we can easily obtain high accuracy transcripts for
broadcast news. Thus traditional text segmentation approaches,
with similar purposes of story segmentation, can be easily
applied to the speech recognition transcripts.

Traditional story segmentation approaches on texts are a
pipeline system consisting of feature learning that catches
semantic or topic information from a stream of text, and
segmentation that partitions the stream to topically coherent
segments by detecting the topic shift.

Feature extraction heavily affects the performance of story
segmentation. Bag-of-words (BOW) representation, or term
frequency-inverse document frequency (tf-idf), is a simple
representation in typical story segmentation approaches, e.g.,
TextTiling and dynamic programming (DP) [6], [7], [8]. How-
ever, BOW or tf-idf only counts the appearances of words,
ignoring semantic relations among them. Instead, probabilistic
latent semantic analysis (pLSA) [9], latent Dirichlet allocation
(LDA) [32], and LapPLSA [33], employ latent topic variables
and create topic model that depicts the probability distribution
of words on topics. With these probabilistic models, BOW
based word representations are transformed into topic repre-
sentations and used in varies segmentation approaches [32],
[34]. Recently, neural network based topic models have shown
promising performances [35], [36], [37], [38], [39]. Specifi-
cally, we derived word representation in topic space from a
neural network based topic model, leading to improved story
segmentation performance [40].

The second component of the pipeline is a segmenter. The
above-mentioned TextTiling [6], [7] and dynamic program-
ming (DP) [33], [41], [42], [43] are typical detection-based
approaches, which find optimal partitions over word sequence
by optimizing a local or global objective. Popular probabilistic
model approaches locate story boundaries by probability dis-
tribution of topics on document and probability distribution of
words on topics. Popular such approaches include PLSA [34],
BayesSeg [44], dd-CRP [45] and HMM [23], [24], [21].

The two components of a story segmentation system are
traditionally modeled independently. The objective function
used to extract feature may be substantially different from
the true performance measure of story segmentation. This
sort of inconsistency may degrade the performance of story
segmentation. The purpose of end-to-end (E2E) learning is to
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Fig. 1. Diagram of the proposed end-to-end story segmentation approach.

combine different components in the pipeline as a whole and
optimize them jointly. There are several major advantages for
end-to-end learning:

• The whole model is more closely related to the target
since it has one objective function.

• It is more efficient because large computational flow
graphs can be optimized together by simple back propa-
gation in the training process.

• The whole system is quite simple since there are only
one input and one output and features are automatically
learned in the end-to-end network.

Recently, E2E learning has achieved promising results in
various tasks. In speaker identification, an E2E i-vector system
was built by combining speaker (i-vector) feature extrac-
tion and identification together using a deep neural network
architecture [46], [47], [48]. An E2E speech recognition
system [10] was proposed to replace various components,
e.g., pronunciation dictionary and input-output alignments,
in the traditional pipeline. This was achieved by a deep
bidirectional long short-term memory (LSTM) recurrent neural
network (RNN) and a connectionist temporal classification
(CTC) objective function. With a trigram language model, the
system has achieved comparable performance to traditional
approaches. Deep Speech, an end-to-end speech recognition
system trained using well-optimized RNN and multiple GPUs,
has achieved 16% error on Switchboard Hub5’00 corpus and
can handle challenging noisy environments [49]. Deep Speech
2 was proposed to recognize either English or Mandarin
Chinese speech by using an end-to-end learning strategy

that can handle a diverse variety of speech including noisy
environments, accents and different languages [50].

Inspired by the success of E2E systems in the fore-
mentioned tasks, we propose an end-to-end learning approach
for story segmentation using LSTM-RNN. Specifically, we
use one LSTM layer for feature extraction, which forms
sentence vectors by accumulating word sequence information.
The derived sentence vectors are fed into another LSTM layer
that captures the context information of each sentence. Finally,
a sigmoid layer is used to predict story boundaries. Impor-
tantly, the whole network is optimized under a unique cost
function for story boundary prediction. We also investigated
bi-directional LSTM (BLSTM) layers as an alternative, since
they can accumulate both past and future information [51].
Experimental results on the TDT2 corpus show that the
proposed approach achieves state-of-the-art performance in
story segmentation.

II. THE PROPOSED APPROACH

A. LSTM for Sentence Embedding and Story Boundary Pre-
diction

LSTM has strong capability of capturing long term infor-
mation and hence we utilize it to extract fixed dimensional
sentence vectors and predict boundary information. As shown
in Fig. 1, the input of the neural network is a sequence
of sentences: s = [s1, s2, ..., sN ], where N denotes the
number of sentences in the input text stream. Each sentence is
comprised of T words in the form of 1-hot representation,
and T varies from sentence to sentence. The words of 1-
hot representation in the n-th sentence, represented by sn =
[s1n, s

2
n, ..., s

T
n ], are projected into word vectors by a linear

projection layer and then fed into the LSTM layer one-by-
one. The LSTM layer goes through the sentence, increasingly
accumulates the information, and the output of last word
is regarded as the representation of whole sentence. Thus
the sequence of sentences [s1, s2, ..., sN ] is transformed to
sequence of sentence vectors [h1,h2, ...,hN ], and then fed
into another LSTM layer. For each sentence hi, the LSTM
layer captures its context information, followed by an output
layer that predicts whether it is at a position of story boundary.

Different from the conventional pipeline systems in which
each component is modeled separately, in the proposed ap-
proach, training the whole network is achieved by simply error
back propagation (BP) [52] on a training set of texts, in which
each sentence is labeled with a boundary identification (0/1)
based on whether it is at the position of a story boundary.
Specially, the training process includes forward propagation
and backward propagation. The forward propagation calculates
the prediction errors and the backward propagation reversely
passes the errors back to modify the model parameters.

B. Bidirectional LSTM

One shortcoming of LSTM is that it only makes use of past
information. However, in the process of extracting sentence-
level features and boundary prediction, past and future con-
text are obviously both important. Thus we try to use bi-

APSIPA ASC 2017



0.685

0.718

0.741
0.735

0.724

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

1 5 10 15 20

F
1

-M
e

a
su

re
 (

%
)

Class Weight

Fig. 2. F1-measure with different class weight.

directional LSTM (BLSTM) that captures the data flow from
both directions. BLSTM consists of a forward LSTM and a
backward LSTM, and the outputs of the two sub-networks are
finally combined. Specifically, given an input sequence, the
forward LSTM reads it from left to right and the backward
LSTM reads it in a reversed order. Each LSTM has their own
parameters. In this way, the BLSTM can use both past inputs
and future inputs for a specific time. For convenience, we name
the proposed end-to-end story segmentation approach with
LSTM and BLSTM layers as E2E-LSTM and E2E-BLSTM,
respectively.

III. EXPERIMENTS

A. Experimental Setup

We carried out experiments on the Topic Detection and
Tracking (TDT2) corpus [4] which includes 2,280 English
broadcast news programs. There were 11,406 stories in total
and each story had an average of 20 topics and 200 words.
We constructed a vocabulary including 57,817 words. The
corpus was separated into a training set with 1,800 programs,
a development set and a test set each with 240 programs.
All texts were stemmed by a Porter stemmer and stop words
were removed. As sentence delimiters are not available in
transcriptions, according to [53], we used significant pauses
as delimiters to construct pseudo-sentences. We used Keras
toolkit [54] to build neural networks. The input data has 3
dimension shapes which are block, sentence and word. Each
block contains the same number of sentences that is 5 in this
study, while each sentence contains varies number of words.
As Keras only accepts sequences of the same length in a batch,
we padded input sentences to the same length of 20 words
that is close to the average number of words in a sentence
in the training data. Hierarchical LSTM architecture is used
in the neural network, specifically, we used one LSTM layer
to construct sentence vectors from a sequence of words, and
another LSTM layer to predict whether the current sentence
is a boundary given its context information which depends on
the length of the block.

We used F1-measure, i.e., the harmonic mean of recall
and precision, to evaluate the story segmentation performance

TABLE I
F1-MEASURE WITH DIFFERENT NUMBER OF LSTM LAYERS AND LSTM

NODES
hhhhhhhhhhhhLSTM layers#

LSTM nodes#
256 512 768 1024

1 0.741 0.757 0.752 0.736
2 0.759 0.772 0.764 0.748
3 0.74 0.755 0.749 0.735

with a tolerance window of 50 words according to the TDT2
standard [4]. The discovered boundaries were compared to
the manually segmented boundaries. Precision is defined as
the percentage of declared boundaries that coincide with the
referenced boundaries. Recall is defined as the percentage of
referenced boundaries that are retrieved. Thus F1-measure is
defined as

F1-measure = 2× Recall × Precision
Recall + Precision

. (1)

We treated the story boundary detection problem as a
sequential labeling task, with sentence boundaries being i-
dentified as either a story boundary or not at each inter-
sentence position in the input text stream. In text documents
like broadcast news transcripts, non-boundary sentences are
far more than those boundary sentences, which causes data
imbalance problem. There are two possible ways to handle
such a situation: over or down sampling and using a weighted
error measure during training [55], [56], [57]. The former
methods have the problem of inconsistency of class distri-
bution between training and test sets, which will affect the
classification performance. Thus we use the latter strategy
in which the errors are computed in proportion to the class
weight.

B. Results of E2E-LSTM

Fig. 2 shows the segmentation performance with different
values of class weight. The x-axis is the weight ratio of
boundary and non-boundary, which is denoted as 1 : x, where
x ranges from 1 to 20. Y-axis denotes the value of F1-measure.
The ratio of 1 : 1 means we assign equal class weight to the
loss function for the two categories. We used one LSTM layer
with 256 nodes for sentence vector extraction and another L-
STM layer with same nodes for boundary prediction. From the
figure, we can observe that the value of F1-measure boosted
drastically as x increases from 1 to 10, and reaches the highest
value when the ratio is 1:10. Then the F1-measure begins to
decrease when x surpasses 10. This observation demonstrates
that assigning an appropriate weight to the minor class for the
loss function can significantly improve the performance for
the imbalanced data problem at hand.

Table I shows the story segmentation performance with
different numbers of LSTM layers and nodes for sentence
vector extraction and boundary prediction. The number of
LSTM layers and nodes ranges from 1 to 3 and 256 to 1024,
respectively. The ratio of class weight is fixed to 1:10 in the
experiment. According to the results, we can conclude that
the F1-measure is significantly improved when the number of
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TABLE II
F1 WITH DIFFERENT NUMBER OF BLSTM LAYERS AND NODES

hhhhhhhhhhhhhBLSTM layers#

BLSTM nodes#
256 512 768 1024

1 0.749 0.762 0.755 0.747
2 0.766 0.779 0.771 0.759
3 0.735 0.758 0.752 0.741

TABLE III
THE PERFORMANCE OF E2E-LSTM AND E2E-BLSTM SYSTEMS ARE

BOTH IMPROVED WHEN WE ADD MORE TRAINING DATA. THE TEST SET IS
NOT CHANGED.

Network Type E2E-LSTM E2E-BLSTM
F1-measure 0.776 0.787

LSTM layers is increased to 2, and then begins to decrease
when increased to 3. With a fixed number of LSTM layers, we
obtain the best performance when the number of LSTM nodes
is 512, as shown by the rows in Table I. We obtain the highest
F1-measure of 0.772 from a neural network with 2 LSTM
layers and 512 nodes, used for both sentence embedding and
boundary prediction.

C. Results of E2E-BLSTM

We further tested the performance of the proposed approach
with different BLSTM layers. The results are summarized in
Table II. Compared with Table I, we notice that the F1-measure
is improved with the same neural network architecture when
the LSTM layers are replaced by the BLSTM layers. When the
neural network has 2 BLSTM layers and 512 nodes, used for
both sentence embedding and boundary prediction, we obtain
the highest F1-measure of 0.779. The better performance
achieved by E2E-BLSTM indicates that bidirectional contexts
are quite useful for story segmentation.

As the proposed E2E model is to directly learn boundaries
from text streams, it is easy to recruit more training data from
other data sets. Thus we included extra training data from
the TDT4 corpus which has another 1,400 broadcast news
programs. The performance of E2E-LSTM and E2E-BLSTM
were both improved. The F1-measure was improved to 0.776
and 0.787 for E2E-LSTM and E2E-BLSTM, respectively,
compared to 0.772 and 0.779 with only the TDT2 corpus as
the training data. Please note that the results were obtained
from the same testing set.

We also visualized the predicted story boundaries and
compared them with the true boundaries. Specifically, Fig. 3
shows the boundaries predicted by E2E-BLSTM for an episode
of broadcast news program from the TDT2 corpus. The x-axis
is the index of sentences, and 0 and 1 on the y-axis represent
non-boundary and boundary, respectively. A sentence with a
value of 1 on y-axis indicates that it is at the position of a story
boundary. The red vertical lines indicate real story boundaries.
From the figure we can see, the predicted boundaries follow
the true boundaries reasonably well, which indicates the ef-
fectiveness of the proposed E2E learning approach.
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Fig. 3. Boundaries predicted by the proposed E2E-BLSTM approach for an
episode of broadcast news program from TDT2 corpus. X-axis is index of
sentences, and 0 and 1 on y-axis represent non-boundary and boundary,
respectively. The red vertical lines indicate real topic boundaries.

TABLE IV
F1-MEASURE COMPARISON WITH STATE-OF-THE-ART METHODS.

Approach F1-measure
TextTiling [6] 0.553
HMM [23] 0.637
PLSA-DP-CE [33] 0.682
BayesSeg [44] 0.710
DD-CRP [45] 0.730
DNN-HMM [58] 0.765
LSTM-HMM [59] 0.774
E2E-LSTM (this study) 0.772
E2E-BLSTM (this study) 0.779
E2E-LSTM (with extra TDT4 data) 0.776
E2E-BLSTM (with extra TDT4 data) 0.787

D. Comparison with the state-of-the-art methods

Finally, we compared the proposed approach with some
state-of-the-art methods benchmarked on the TDT2 corpus.
The results are summarized in Table IV. We can clearly
see the proposed E2E-BLSTM approach outperforms all the
methods in the comparison. The F1-measure of E2E-LSTM is
slightly lower than LSTM-HMM approach (0.772 and 0.774,
respectively). However, when we use BLSTM layers, the
performance surpasses that of the LSTM-HMM approach and
achieves the best performance.

IV. CONCLUSIONS

In this paper, we have proposed an end-to-end neural
network approach to story segmentation. Different from con-
ventional approaches that treat feature extraction and boundary
prediction separately, we use a neural network to model
and optimize the two components jointly. Specifically, in our
neural network, we use an LSTM layer to extract sentence-
level embedding and another LSTM layer to predict story
boundaries. Importantly, the whole network is optimized under
a unique cost function for story boundary prediction. We also
investigated using BLSTM layers that can capture both past
and future information. Experiments on TDT2 corpus show
that the proposed approach outperforms the traditional ap-
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proaches and achieves state-of-the-art performance. In future,
we plan to study pair-wise learning [60], [61], [62] in end-to-
end story segmentation.
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